Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
उत्तर
Let I = `int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Put x2 = t for the purpose of partial fraction.
We get `"t"/(("t" + "a"^2)("t" + "b"^2))`
Put `"t"/(("t" + "a"^2)("t" + "b"^2)) = "A"/("T" + "a"^2) + "B"/("t" + "b"^2)`
⇒ `"t"/(("t" + "a"^2)("t" + "b"^2)) = ("A"("t" + "b"^2) + "B"("t" + "a"^2))/(("t" + "a"^2)("t" + "b"^2))`
⇒ t = At + Ab2 + Bt + Ba2
Comparing the like terms, we get
A + B = 1 and Ab2 + Ba2 = 0
A = `(-"a"^2)/"b"^2 "B"`
∴ `(-"a"^2)/"b"^2 "B" + "B"` = 1
`"B"((-"a"^2)/"b"^2 + 1)` = 1
⇒ `"B"((-"a"^2 + "b"^2)/"b"^2)` = 1
⇒ B = `"b"^2/("b"^2 - "a"^2)` and A = `(-"a"^2)/"b"^2 xx "b"^2/("b"^2 - "a"^2) = "a"^2/("a"^2 - "b"^2)`
So A = `"a"^2/("a"^2 - "b"^2)` and B = `(-"b"^2)/("a"^2 - "b"^2)`
∴ `int x^2/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x = "a"^2/("a"^2 - "b"^2) int 1/(x^2 + "a"^2) "d"x - "b"^2/("a"^2 - "b"^2) int 1/(x^2 + "b"^2) "d"x`
= `"a"^2/("a"^2 - "b"^2) xx 1/"a" tan^-1 x/"a" - "b"^2/("a"^2 - "b"^2) * 1/"b" tan^-1 x/"b"`
= `"a"/("a"^2 - "b"^2) tan^-1 x/"a" - "b"/("a"^2 - "b"^2) tan^-1 x-"b" + "C"`
Hence, I = `1/("a"^2 - "b"^2) ["a" tan^-1 x/"a" - "b" tan^-1 x/"b"] + "C"`.
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x^2"e"^(4x) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`