Advertisements
Advertisements
प्रश्न
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
उत्तर
`int x^4/((x - 1)(x^2 + 1))dx = int ((x^4 - 1 + 1))/((x - 1)(x^2 + 1))dx`
= `int ((x^4 - 1))/((x - 1)(x^2 + 1))dx + int 1/((x - 1)(x^2 + 1))dx`
= `int(x + 1)dx + int 1/((x - 1)(x^2 + 1))dx`
= `x^2/2 + x + int dx/((x - 1)(x^2 + 1))`
= `x^2/2 + x + 1/2 int (1/(x - 1) - (x + 1)/(x^2 + 1))dx` ...{∵ Partial factorisation}
= `x^2/2 + x + 1/2[int 1/(x - 1)dx - int (xdx)/(x^2 + 1) - int dx/(1 + x^2)]`
= `x^2/2 + x + 1/2 log(x - 1) - 1/4 log (x^2 + 1) - 1/2 tan^-1 x + C`.
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int sqrt(4^x(4^x + 4)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`