Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
उत्तर
Let I = `int (2x^2 - 1)/(x^4 + 9x^2 + 20).dx`
Consider, `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
For finding partial fractions only, put x2 = t.
∴ `(2x^2 - 1)/(x^4 + 9x^2 + 20) = t/((t + 1)(t - 2)(t + 3)`
= `"A"/(t + 1) + "B"/(t - 2) + "C"/(t + 3)` ...(Say)
∴ t = A(t – 2)(t + 3) + B(t + 1)(t + 3) + C(t + 1)(t –2)
Put t + 1 = 0, i.e. t = – 1, we get
–1 = A(– 3)(2) + B(0)(2) + C(0)(– 3)
∴ – 1 = – 6A
∴ A = `(1)/(6)`
Put t – 2 = 0, i.e. t = 2, we get
2 = A(0)(5) + B(3)(5) + C(3)(0)
∴ 2 = 15B
∴ B = `(2)/(15)`
Put t + 3 = 0, i.e. t = – 3, we get
– 3 = A(– 5)(0) + B(– 2)(0) + C(– 2)(– 5)
–3 = 10C
∴ C = `-(3)/(10)`
∴ `t/((t + 1)(t - 2)(t + 3)) = ((1/6))/(t + 1) + ((2/15))/(x^2 - 2) + (((-3)/10))/(x^2 + 3)`
∴ `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) = ((1/6))/(x^2 + 1) + ((2/15))/(x^2 - 2) + (((-3)/10))/(x^2 + 3)`
∴ I = `int [((1/6))/(x^2 + 1) + ((2/15))/(x^2 - 2) + (((-3)/10))/(x^2 + 3)].dx`
= `(1)/(6) int (1)/(1 + x^2).dx + (2)/(15) int (1)/(x^2 - (sqrt(2))^2).dx - (3)/(10) int (1)/(x^2 + (sqrt(3))^2).dx`
= `(1)/(6) tan^-1 x + (2)/(15) xx (1)/(2sqrt(2))log|(x - sqrt(2))/(x + sqrt(2))| - (3)/(10) xx (1)/sqrt(3)tan^-1(x/sqrt(3)) + c`
= `(11)/sqrt(5)tan^-1 (x/sqrt(5)) - (9)/(2)tan^-1(x/2) + c`.
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`