Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
उत्तर
Let `I = int 1/(x (x^n + 1))` dx
`= int x^(n - 1)/(x^n (x^n + 1))` dx
Put xn = t
⇒ nxn -1 dx = dt
`therefore I = 1/n dt/(t (t + 1))`
Now, `1/(t(t + 1)) = A/t + B/(t + 1)`
∴ 1 = A(t + 1) + Bt
Putting t = 0, 1 = A
∴ A = 1
Putting t = -1, 1 = -1B
∴ B = -1
`therefore 1/(t(t + 1)) = 1/t - 1/(t + 1)`
`therefore I = 1/n int dt/(t(t + 1)) = 1/n int (1/t - 1/(t + 1))` dt
`= 1/n log t - 1/n log (t + 1) + C`
`= 1/n [log t - log (t + 1)] + C`
`= 1/n log abs (t/(t + 1)) + C`
`= 1/n log abs ((x_n )/(x^n + 1)) = C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^7/(1 + x^4)^2 "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x^2"e"^(4x) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.