मराठी

Integrate the rational function: x3+x+1x2-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`

बेरीज

उत्तर

Let `I = int (x^3 + x + 1)/(x^2 - 1)  dx`

Since `(x^3 + x + 1)/(x^2 - 1)` is an improper fraction, we convert it into a proper fraction by long division method.

`x^2 - 1) overline (x^3 + x + 1)(x`
              x3 - x
            -     +       
                     2x + 1
`(x^3 + x + 1)/(x^2 -1) = Q + R/D`

∴ `(x^3 + x + 1)/(x^2 - 1) = x + (2x + 1)/(x^2 - 1)`        ....(i)

Now, 

`(2x + 1)/(x^2 - 1) = (2x + 1)/ ((x + 1)(x - 1))`

`= A/(x + 1) + B/(x - 1)`

⇒ 2x + 1 = A (x - 1) + B (x + 1)              ....(ii)

Putting x = -1 in (ii), we get

-2 + 1 = A (-1-1)

⇒ `A = (-1)/-2 = 1/2`

Putting x = 1 in (ii), we get

2 + 1 = B (1 + 1)

⇒ `B = 3/2`

∴ `(2x + 1)/(x^2 - 1) = 1/(2 (x + 1)) + 3/ (2 (x - 1))`             ....(iii)

From (i) and (iii),

`(x^3 + x + 1)/(x^2 - 1) = x + 1/ (2(x + 1)) + 3/ (2 (x - 1))`

∴ `int(x^3 + x + 1)/(x^2 - 1)  dx`

`= int x  dx + 1/2 int dx/ (x + 1) + 3/2 int dx/ (x - 1)`

`= x^2/2 + 1/2 log |x + 1| + 3/2  log |x - 1| + C` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 12 | पृष्ठ ३२२

संबंधित प्रश्‍न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int 1/(x(x^3 - 1)) "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sin(logx)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Evaluate: `int (dx)/(2 + cos x - sin x)`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×