Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`x/((x^2+1)(x - 1))`
उत्तर
Let `x/((x^2 + 1)(x - 1)) = (Ax + B)/(x^2 + 1) + C/((x - 1))`
⇒ x = (A) (+ B)(x - 1) + C = `1/2`
Put x = 1
1 = 0 + 2C
⇒ C `= 1/2`
On comparing the coefficients of x2 or x
0 = A + C
⇒ A = `- 1/2`
and 1 = - A + B
⇒ B `= 1/2`
Hence, `int x/((x^2 + 1)(x - 1)) dx`
`= int (- 1/2 x + 1/2)/(x^2 + 1) dx + 1/2 int 1/(x - 1) dx`
`= -1/2 int (x - 1)/(x^2 + 1) dx + 1/2 log abs (x - 1) + C`
`= 1/4 int (2x)/(x^2 + 1) + 1/2 int 1/(x^2 + 1) dx + 1/2 log abs (x - 1) + C`
`= - 1/4 log abs (x^2 + 1) + 1/2 tan^-1 x + 1/2 log abs (x - 1) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`