मराठी

Integrate the rational function: x(x2+1)(x-1) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`x/((x^2+1)(x - 1))`

बेरीज

उत्तर

Let `x/((x^2 + 1)(x - 1)) = (Ax + B)/(x^2 + 1) + C/((x - 1))`

⇒ x = (A) (+ B)(x - 1) + C = `1/2`

Put x = 1

1 = 0 + 2C

⇒ C `= 1/2`

On comparing the coefficients of x2 or x

0 = A + C

⇒ A = `- 1/2`

and 1 = - A + B

⇒ B `= 1/2`

Hence, `int x/((x^2 + 1)(x - 1))  dx`

`= int (- 1/2  x + 1/2)/(x^2 + 1)  dx + 1/2 int 1/(x - 1)  dx`

`= -1/2 int (x - 1)/(x^2 + 1)  dx + 1/2  log abs (x - 1) + C`

`= 1/4 int (2x)/(x^2 + 1) + 1/2 int 1/(x^2 + 1)  dx + 1/2 log abs (x - 1) + C`

`= - 1/4  log abs (x^2 + 1) + 1/2  tan^-1 x + 1/2  log abs (x - 1) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 7 | पृष्ठ ३२२

संबंधित प्रश्‍न

Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×