Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
उत्तर
Let `I = int (2x)/((x^2 + 1)(x^2 + 3))` dx
Putting x2 = t, 2x dx = dt
`therefore I = int dt/((t + 1)(t + 3))`
Now, `1/((t + 1)(t + 3)) = A/(t + 1) = B/(t + 3)`
1 = A(t + 3) + B(t + 1)
Put t = -1
1 = A(-1 + 3)
⇒ 1 = 2A
∴ A `= 1/2`
Put t = -3
1 = B (-3 + 1)
⇒ 1 = -2B
∴ B `= -1/2`
`therefore 1/((t + 1)(t + 3)) = 1/(2(t + 1)) - 1/(2(t + 3))`
`therefore I = int 1/((t + 1)(t + 3)) dt = 1/2 int 1/(t + 1) dt - 1/2 int 1/(t + 3) dt`
`= 1/2 log (t + 1) - 1/2 log (t + 3) + C`
`= 1/2 log abs ((t + 1)/(t + 3)) + C`
`= 1/2 log abs ((x^2 + 1)/(x^2 + 3)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int ("d"x)/(2 + 3tanx)`
`int ("d"x)/(x^3 - 1)`
Evaluate `int x log x "d"x`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`