Advertisements
Advertisements
Question
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Solution
Let `I = int (2x)/((x^2 + 1)(x^2 + 3))` dx
Putting x2 = t, 2x dx = dt
`therefore I = int dt/((t + 1)(t + 3))`
Now, `1/((t + 1)(t + 3)) = A/(t + 1) = B/(t + 3)`
1 = A(t + 3) + B(t + 1)
Put t = -1
1 = A(-1 + 3)
⇒ 1 = 2A
∴ A `= 1/2`
Put t = -3
1 = B (-3 + 1)
⇒ 1 = -2B
∴ B `= -1/2`
`therefore 1/((t + 1)(t + 3)) = 1/(2(t + 1)) - 1/(2(t + 3))`
`therefore I = int 1/((t + 1)(t + 3)) dt = 1/2 int 1/(t + 1) dt - 1/2 int 1/(t + 3) dt`
`= 1/2 log (t + 1) - 1/2 log (t + 3) + C`
`= 1/2 log abs ((t + 1)/(t + 3)) + C`
`= 1/2 log abs ((x^2 + 1)/(x^2 + 3)) + C`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int x^7/(1 + x^4)^2 "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`