Advertisements
Advertisements
Question
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Solution
Let I = `int sqrt(tanx) "d"x`
Put tan x = t2
⇒ sec2x dx = 2t dt
∴ I = `int "t" * (2"t")/(sec^2x) "dt"`
= `2 int "t"^2/(1 + "t"^4) "dt"`
= `int (("t"^2 + 1) + ("t"^2 - 1))/((1 + "t"^4)) "dt"`
= `int ("t"^2 + 1)/(1 + "t"^4) "dt" + int ("t"^2 - 1)/(1 + "t"^4) "dt"`
= `int (1 + 1/"t"^2)/("t"^2 + 1/"t"^2) "dt" + int (1 - 1/"t"^2)/("t"^2 + 1/"t"^2) "dt"`
= `int (1 + 1/"t"^2)/(("t" - 1/"t")^2 + 2)"dt" + int (1 - 1/"t"^2)/(("t" + 1/"t")^2 - 2)"dt"`
Put u = `"t" - 1/"t"`
⇒ du = `(1 + 1/"t"^2)"dt"` in first integral
And put v = `"t" + 1/"t"`
⇒ dv = `(1 - 1/"t"^2)"dt"` in second integral
∴ I = `int "du"/("u"^2 + (sqrt(2)^2)) + int "dv"/("v"^2 - (sqrt(2)^2))`
= `1/sqrt(2) tan^-1 "u"/sqrt(2) + 1/(2sqrt(2)) log|("v" - sqrt(2))/("v" + sqrt(2))| + "C"`
= `1/sqrt(2) tan^-1 ("t" - 1/"t")/sqrt(2) + 1/(2sqrt(2)) log |("t" + 1/"t" - sqrt(2))/("t" + 1/"t" + sqrt(2))| + "C"`
= `1/sqrt(2) tan^-1 ("t"^2 - 1)/(sqrt(2)"t") + 1/(2sqrt(2)) log |("t"^2 + 1 - sqrt(2)"t")/("t"^2 + 1 + sqrt(2)"t")| + "C"`
= `1/sqrt(2) tan^-1 ((tanx - 1)/sqrt(2tan x)) + 1/(2sqrt(2)) log |(tan x - sqrt(2 tanx) + 1)/(tan x + sqrt(2 tan x) + 1)| + "C"`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^2sqrt("a"^2 - x^6) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int xcos^3x "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`