Advertisements
Advertisements
Question
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Solution
Let `x/((x - 1)^2(x + 2))`
`= A/((x - 1)) = B/((x - 1)^2) + C/((x + 2))`
⇒ x = A(x - 1)(x + 2) + B(x + 2) + C(x - 1)2 ...(1)
Put x = 1
1 = 3B
⇒ B = `1/3`
Put x = -2
-2 = C (-2 - 1)2
⇒ C = `(-2)/9`
On comparing the coefficients of x2
A = `-C = 2/9`
Hence, `int x/((x+ 1)^2(x - 2))` dx
`= int 2/ (9 (x - 1)) dx + int 1/ (3 (x - 1)^2) dx - int 2/ (9(x + 2)) dx`
`= 2/9 log abs (x - 1) + 1/3 int (x - 1)^-1/-1 - 2/9 log abs (x + 2) + C`
`= 2/9 log abs ((x - 1)/(x + 2)) - 1/(3(x + 1)) + C`
APPEARS IN
RELATED QUESTIONS
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (dx)/(x(x^2 + 1))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
`int 1/(x(x^3 - 1)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x^3tan^(-1)x "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate `int x log x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`