Advertisements
Advertisements
Question
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Solution
Let I = `int "x"/(("x - 1")^2("x + 2"))` dx
Let `"x"/(("x - 1")^2("x + 2")) = "A"/"x - 1" + "B"/("x - 1")^2 + "C"/("x + 2")`
∴ x = A (x - 1) (x + 2) + B (x + 2) + C (x - 1)2 ....(i)
Putting x = 1 in (i), we get
1 = A (0) (3) + B (3) + C (0)2
∴ 1 = 3B
∴ B = `1/3`
Putting x = -2 in (i), we get
- 2 = A(- 3) (0) + B (0) + C (9)
∴ - 2 = 9C
∴ C = - `2/9`
Putting x = - 1 in (i), we get
- 1 = A(- 2) (1) + B (1) + C (4)
∴ - 1 = - 2A +`1/3 - 8/9 `
∴ - 1 = - 2A `- 5/9`
∴ 2A = `- 5/9 + 1 = 4/9`
∴ A = `2/9`
∴ `"x"/(("x - 1")^2("x + 2")) = (2/9)/"x - 1" + (1/3)/("x - 1")^2 + (- 2/9)/"x + 2"`
∴ I = `int [(2/9)/"x - 1" + (1/3)/("x - 1")^2 + (- 2/9)/"x + 2"]` dx
`= 2/9 int 1/"x - 1" "dx" + 1/3int ("x - 1")^-2 "dx" - 2/9 int 1/"x + 2" "dx"`
`= 2/9 log |"x - 1"| + 1/3 * ("x - 1")^-1/-1 - 2/9 log |"x + 2"|` + c
`= 2/9 log |"x - 1"| - 2/9 log |"x + 2"| - 1/3 xx 1/("x - 1") + "c"`
∴ I = `2/9 log |("x - 1")/("x + 2")| - 1/(3("x - 1"))` + c
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`