Advertisements
Advertisements
Question
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Solution
Let I = `int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Put x2 = t for the purpose of partial fraction.
We get `"t"/(("t" + "a"^2)("t" + "b"^2))`
Put `"t"/(("t" + "a"^2)("t" + "b"^2)) = "A"/("T" + "a"^2) + "B"/("t" + "b"^2)`
⇒ `"t"/(("t" + "a"^2)("t" + "b"^2)) = ("A"("t" + "b"^2) + "B"("t" + "a"^2))/(("t" + "a"^2)("t" + "b"^2))`
⇒ t = At + Ab2 + Bt + Ba2
Comparing the like terms, we get
A + B = 1 and Ab2 + Ba2 = 0
A = `(-"a"^2)/"b"^2 "B"`
∴ `(-"a"^2)/"b"^2 "B" + "B"` = 1
`"B"((-"a"^2)/"b"^2 + 1)` = 1
⇒ `"B"((-"a"^2 + "b"^2)/"b"^2)` = 1
⇒ B = `"b"^2/("b"^2 - "a"^2)` and A = `(-"a"^2)/"b"^2 xx "b"^2/("b"^2 - "a"^2) = "a"^2/("a"^2 - "b"^2)`
So A = `"a"^2/("a"^2 - "b"^2)` and B = `(-"b"^2)/("a"^2 - "b"^2)`
∴ `int x^2/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x = "a"^2/("a"^2 - "b"^2) int 1/(x^2 + "a"^2) "d"x - "b"^2/("a"^2 - "b"^2) int 1/(x^2 + "b"^2) "d"x`
= `"a"^2/("a"^2 - "b"^2) xx 1/"a" tan^-1 x/"a" - "b"^2/("a"^2 - "b"^2) * 1/"b" tan^-1 x/"b"`
= `"a"/("a"^2 - "b"^2) tan^-1 x/"a" - "b"/("a"^2 - "b"^2) tan^-1 x-"b" + "C"`
Hence, I = `1/("a"^2 - "b"^2) ["a" tan^-1 x/"a" - "b" tan^-1 x/"b"] + "C"`.
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
`int (dx)/(x(x^2 + 1))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int 1/(2 + cosx - sinx) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (x + sinx)/(1 - cosx) "d"x`
`int ("d"x)/(x^3 - 1)`
`int xcos^3x "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`