English

Evaluate the following: dab∫x2dx(x2+a2)(x2+b2) - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`

Sum

Solution

Let I = `int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`

Put x2 = t for the purpose of partial fraction.

We get `"t"/(("t" + "a"^2)("t" + "b"^2))`

Put `"t"/(("t" + "a"^2)("t" + "b"^2)) = "A"/("T" + "a"^2) + "B"/("t" + "b"^2)`

⇒ `"t"/(("t" + "a"^2)("t" + "b"^2)) = ("A"("t" + "b"^2) + "B"("t" + "a"^2))/(("t" + "a"^2)("t" + "b"^2))`

⇒ t = At + Ab2 + Bt + Ba2

Comparing the like terms, we get

A + B = 1 and Ab2 + Ba2 = 0

A = `(-"a"^2)/"b"^2 "B"`

∴ `(-"a"^2)/"b"^2 "B" + "B"` = 1

`"B"((-"a"^2)/"b"^2 + 1)` = 1

⇒ `"B"((-"a"^2 + "b"^2)/"b"^2)` = 1

⇒ B = `"b"^2/("b"^2 - "a"^2)` and A = `(-"a"^2)/"b"^2 xx "b"^2/("b"^2 - "a"^2) = "a"^2/("a"^2 - "b"^2)`

So A = `"a"^2/("a"^2 - "b"^2)` and B = `(-"b"^2)/("a"^2 - "b"^2)`

∴ `int x^2/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x = "a"^2/("a"^2 - "b"^2) int 1/(x^2 + "a"^2) "d"x - "b"^2/("a"^2 - "b"^2) int 1/(x^2 + "b"^2) "d"x`

= `"a"^2/("a"^2 - "b"^2) xx 1/"a" tan^-1  x/"a" - "b"^2/("a"^2 - "b"^2) * 1/"b" tan^-1  x/"b"`

= `"a"/("a"^2 - "b"^2) tan^-1  x/"a" - "b"/("a"^2 - "b"^2) tan^-1  x-"b" + "C"`

Hence, I = `1/("a"^2 - "b"^2) ["a" tan^-1  x/"a" - "b" tan^-1   x/"b"] + "C"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 36 | Page 165

RELATED QUESTIONS

Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


`int (dx)/(x(x^2 + 1))` equals:


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


`int 1/(2 +  cosx - sinx)  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


`int xcos^3x  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×