Advertisements
Advertisements
Question
Integrate the rational function:
`1/(x^4 - 1)`
Solution
Let `1/(x^4 - 1) = 1/((x + 1)(x - 1)(x^2 + 1))`
`= A/(x + 1) + B/(x - 1) + (Cx + D)/(x^2 + 1)`
1 ≡ A(x – 1) (x2 + 1) + B(x + 1) (x2 + 1) + (Cx + D) (x + 1) (x – 1) …(1)
Putting x = -1 in equation (1),
1 = A (-1 – 1) (1 + 1)
⇒ 1 = A (-4)
⇒ A = `-1/4`
Putting x = 1 in equation (1),
1 = B (1 + 1) (1 + 1)
⇒ 1= B (2) (2)
⇒ B = `1/4`
Comparing the coefficients of x3 in equation (1),
0 = A + B + C
`=> 0 = (-1)/4 + 1/4 + C`
⇒ C = 0
1 = -A + B - D
`=> 1 = 1/4 + 1/4 - D`
⇒ ` D = -1/2`
`therefore 1/(x^4 - 1) = - 1/(4(x + 1)) + 1/(4(x - 1)) - 1/(2 (x^2 + 1))`
`therefore int dx/(x^4 - 1) = 1/4 int 1/(x + 1) dx + 1/4 int 1/(x - 1) dx - 1/2 int 1/(x^2 + 1) dx`
`= - 1/4 log (x + 1) = 1/4 log (x - 1) -1/2 tan^-1 x + C`
`= 1/4 log ((x - 1)/(x + 1)) - 1/2 tan^-1 x + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`