Advertisements
Advertisements
Question
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Solution
Let `I = int (3x - 1)/ (x + 2)^2 dx`
Let `(3x - 1)/(x + 2)^2 = A/(x + 2) + B/ (x + 2)^2`
⇒ 3x - 1 = A (x + 2) + B .....(i)
Comparing coefficients of x in (i), we get
A = 3
Comparing the coefficients of constant terms in (i), we get
2A + B = -1
Put A = 3 in (ii), and we get 6 + B = -1
⇒ B = -7
∴ `(3x - 1)/(x + 2)^2 = 3/ (x + 2) + (-7)/(x + 2)^2`
⇒ `int (3x - 1)/(x + 2)^2 dx = 3 int dx/ (x + 2) - 7 int dx/ (x + 2)^2`
`= 3 log |x + 2| -7 (x + 2)^-1/-1 + C`
`= 3 log |x + 2| + 7/ (x + 2) + C`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int xcos^3x "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`