English

∫xcos3x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

xcos3x dx

Sum

Solution

Let I = xcos3x dx

cos3x = 4cos3x − 3cosx

∴ 4cos3x = 3cos x + cos 3x

∴ cos3x = 14(3cosx+cos3x)

∴ I = 14x(3cosx+cos3x) dx

= 14[x(3cosx+cos3x)dx-{ddx(x)(3cosx+cos3x)dx}dx]

= 14[x(3sinx+sin3x3)-1(3sinx+sin3x3)dx]

= 14[3xsinx+x3sin3x-(-3cosx-13cos3x3)]+c

∴ I = 14(3xsinx+x3sin3x+3cosx+19cos3x)+c

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate : x2(x2+2)(2x2+1)dx 


Evaluate:

x2x4+x2-2dx


Evaluate: 8(x+2)(x2+4)dx 


Integrate the rational function:

x(x-1)(x-2)(x-3)


Integrate the rational function:

2xx2+3x+2


Integrate the rational function:

2x-3(x2-1)(2x+3)


Integrate the rational function:

5x(x+1)(x2-4)


Integrate the rational function:

2(1-x)(1+x2)


Integrate the rational function:

3x-1(x+2)2


dxx(x2+1) equals:


Find exdx(ex-1)2(ex+2)


Integrate the following w.r.t. x : 2x4-3x-x2


Integrate the following w.r.t. x : 1x(x5+1)


Integrate the following w.r.t. x : 2x4x-32x-4


Integrate the following w.r.t. x : 1x(1+4x3+3x6)


Integrate the following w.r.t. x : (3sin-2)cosx5-4sinx-cos2x


Integrate the following w.r.t. x : 1sinx+sin2x


Integrate the following w.r.t. x : 12sinx+sin2x


Integrate the following w.r.t. x : 1sinx(3+2cosx)


Integrate the following w.r.t. x : 5ex(ex+1)(e2x+9)


Integrate the following with respect to the respective variable : cot-1(1+sinxcosx)


Integrate the following w.r.t.x:

x2(x-1)(3x-1)(3x-2)


Integrate the following w.r.t.x : 1sinx+sin2x


Integrate the following w.r.t.x :  sec2x7+2tanx-tan2x


Evaluate: 2x+1(x + 1)(x - 2) dx


Evaluate: 2x+1x(x - 1)(x - 4) dx


Evaluate: x2+x-1x2+x-6 dx


Evaluate: 3x - 2(x + 1)2(x + 3) dx


Evaluate: 5x2+20x+6x3+2x2+x dx


For x - 1(x + 1)3 exdx=ex f(x) + c, f(x) = (x + 1)2.


Evaluate: 3x-12x2-x-1 dx


Evaluate: 1+logxx(3+logx)(2+3logx) dx


2x-74x-1dx


(x2+2)x2+1ax+tan-1xdx


9+x9-x dx


12+ cosx-sinx dx


esin-1x[x+1-x21-x2]dx


dx2+3tanx


3x+42x2+2x+1 dx


x3tan-1x dx


x+sinx1-cosx dx


dxx3-1


sin2x3sin4x-4sin2x+1 dx


 (2logx+3)x(3logx+2)[(logx)2+1] dx


Choose the correct alternative:

1+x dx =


Choose the correct alternative:

(x3+3x2+3x+1)(x+1)5dx =


Evaluate 2ex+52ex+1 dx


x(x-1)2(x+2)dx


14x2-20x+17 dx


3e2t+54e2t-5 dt


Verify the following using the concept of integration as an antiderivative

x3dxx+1=x-x22+x33-log|x+1|+C


Evaluate the following:

x21-x4dx put x2 = t


Evaluate the following:

x2dxx4-x2-12


Evaluate: dx2+cosx-sinx


Find: x2(x2+1)(3x2+4)dx


Evaluate: -215-4x-x2dx


If f(x) = (3x-1)x(x+1)(18x11+15x10-10x9)16dx, where f(0) = 0, is in the form of (18xα+15xβ-10xγ)δθ, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


1(x2+1)2dx = ______.


Evaluate: 2x2-3(x2-5)(x2+4)dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.