Advertisements
Advertisements
Question
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Solution
Let I = `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Put t = x2
`t/((t + 1)(3t + 4)) = A/(t + 1) + B/(3t + 4)`
t = A(3t + 4) + B(t + 1)
t = (3A + B)t + (4A + B)
On comparing both sides, we get
3A + B = 1 and 4A + B = 0
∴ I = `int (-1)/(x^2 + 1)dx + int (-4)/(3x^2 + 4)dx`
= `-int 1/(x^2 + 1)dx - 4int 1/(3x^2 + 4)dx`
= `-int 1/(x^2 + 1^2)dx - 4int 1/((sqrt(3)x)^2 + 2^2)dx`
= `(-1)/1 tan^-1 (x/2) - 4/(2sqrt(3)) tan^-1 ((sqrt(3)x)/2) + C`
= `-tan^-1x - 2/sqrt(3) tan^-1 ((sqrt(3)x)/2) + C`
RELATED QUESTIONS
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(x(x^3 - 1)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.