Advertisements
Advertisements
Question
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
Solution
Let I = `int (6x^2 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
2x + 3
`3x^2 - 2x - 1")"overline(6x^3 + 5x^2 + 0x - 7`
6x3 − 4x2 − 2x
(−) (+) (+)
9x2 + 2x − 7
9x2 − 6x − 3
(−) (+) (+)
8x − 4
∴ I = `int (2x + 3 + (8x - 4)/(3x^2 - 2x - 1)) "d"x`
3x2 – 2x – 1 = 3x2 – 3x + x – 1
= 3x(x – 1) + 1(x – 1)
= (x – 1)(3 x + 1)
∴ I = `int[2x + 3 + (8x - 4)/((x - 1)(3x + 1))] "d"x`
Let `(8x - 4)/((x - 1)(3x + 1)) = "A"/(x - 1) + "B"/(3x + 1)`
∴ 8x – 4 = A(3x + 1) + B(x – 1) ........(i)
Putting x = 1 in (i), we get
4 = 4A
∴ A = 1
Putting x = `(-1)/3` in (i), we get
`8(-1/3) - 4 = "B"(-1/3 - 1)`
∴ `(-20)/3 = -4/3 "B"`
∴ B = 5
∴ `(8x - 4)/((x - 1)(3x + 1)) = 1/(x - 1) + 5/(3x + 1)`
∴ I = `int (2x + 3 + 1/(x - 1) + 5/(3x + 1)) "d"x`
= `2 int x "d"x + 3 int "d"x + int 1/(x - 1) "d"x + 5/3 int 3/(3x + 1) "d"x`
= `2(x^2/2) + 3x + log|x + 1| + (5log|3x + 1|)/3 + "c"`
∴ I = `x^2 + 3x + log|x - 1| + 5/3 log|3x + 1| + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`