English

D∫6x3+5x2-73x2-2x-1 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`

Sum

Solution

Let I = `int (6x^2 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`

                         2x + 3
`3x^2 - 2x - 1")"overline(6x^3 + 5x^2 + 0x - 7`
                        6x3  −  4x2  − 2x
                        (−)      (+)      (+)      
                                   9x2 + 2x − 7
                                   9x2 − 6x − 3
                                   (−)    (+)   (+)
                                             8x −  4

∴ I = `int (2x + 3 + (8x - 4)/(3x^2 - 2x - 1))  "d"x`

3x2 – 2x – 1 = 3x2 – 3x + x – 1

= 3x(x – 1) + 1(x – 1)

= (x – 1)(3 x + 1)

∴ I = `int[2x + 3 + (8x - 4)/((x - 1)(3x + 1))]  "d"x`

Let `(8x - 4)/((x - 1)(3x + 1)) = "A"/(x - 1) + "B"/(3x + 1)`

∴ 8x – 4 = A(3x + 1) + B(x – 1)   ........(i)

Putting x = 1 in (i), we get

4 = 4A

∴ A = 1

Putting x = `(-1)/3` in (i), we get

`8(-1/3) - 4 = "B"(-1/3 - 1)`

∴ `(-20)/3 = -4/3 "B"`

∴ B = 5

∴ `(8x - 4)/((x - 1)(3x + 1)) = 1/(x - 1) + 5/(3x + 1)`

∴ I = `int (2x + 3 + 1/(x - 1) + 5/(3x + 1))  "d"x`

= `2 int x  "d"x + 3 int  "d"x + int 1/(x - 1)  "d"x + 5/3 int 3/(3x  + 1)  "d"x`

= `2(x^2/2) + 3x + log|x + 1| + (5log|3x + 1|)/3 + "c"`

∴ I = `x^2 + 3x + log|x - 1| + 5/3 log|3x + 1| + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int x sin2x cos5x  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x log x  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×