Advertisements
Advertisements
Question
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Solution
Let `I = int (x^3 + x + 1)/(x^2 - 1) dx`
Since `(x^3 + x + 1)/(x^2 - 1)` is an improper fraction, we convert it into a proper fraction by long division method.
`x^2 - 1) overline (x^3 + x + 1)(x`
x3 - x
- +
2x + 1
`(x^3 + x + 1)/(x^2 -1) = Q + R/D`
∴ `(x^3 + x + 1)/(x^2 - 1) = x + (2x + 1)/(x^2 - 1)` ....(i)
Now,
`(2x + 1)/(x^2 - 1) = (2x + 1)/ ((x + 1)(x - 1))`
`= A/(x + 1) + B/(x - 1)`
⇒ 2x + 1 = A (x - 1) + B (x + 1) ....(ii)
Putting x = -1 in (ii), we get
-2 + 1 = A (-1-1)
⇒ `A = (-1)/-2 = 1/2`
Putting x = 1 in (ii), we get
2 + 1 = B (1 + 1)
⇒ `B = 3/2`
∴ `(2x + 1)/(x^2 - 1) = 1/(2 (x + 1)) + 3/ (2 (x - 1))` ....(iii)
From (i) and (iii),
`(x^3 + x + 1)/(x^2 - 1) = x + 1/ (2(x + 1)) + 3/ (2 (x - 1))`
∴ `int(x^3 + x + 1)/(x^2 - 1) dx`
`= int x dx + 1/2 int dx/ (x + 1) + 3/2 int dx/ (x - 1)`
`= x^2/2 + 1/2 log |x + 1| + 3/2 log |x - 1| + C`
APPEARS IN
RELATED QUESTIONS
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int sqrt(4^x(4^x + 4)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(4x^2 - 20x + 17) "d"x`
`int sin(logx) "d"x`
`int x^3tan^(-1)x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/(4x^2 - 20x + 17) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`