English

Integrate the following w.r.t. x : 12sinx+sin2x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`

Sum

Solution

Let I =  `int (1)/(2sinx + sin2x)dx`

= `int (1)/(2sinx + 2sinx cosx)dx`

=  `int (1)/(2sinx(1 + cosx))dx`

= `int (sinx)/(2sin^2x(1 + cosx))dx`

= `int (sinx.dx)/(2(1 - cos^2x)(1 + cosx))dx`

= `int (sin*dx)/(2(1 - cosx)(1 + cosx)(1 + cosx)`

=  `int (sin*dx)/(2(1 - cosx)(1 + cosx)^2`

Put cos x = t
∴ – sinx .dx = dt
∴ sinx .dx = – dt

∴ I = `-(1)/(2) int (1)/((1 - t)(1 + t)^2)*dt`

= `(1)/(2) int (1)/((t - 1)(t + 1)^2)*dt`

Let `(1)/((t - 1)(t + 1)^2) = "A"/(t - 1) + "B"/(t + 1) + "C"/(t + 1)^2`

∴ 1 = A(t + 1)2 + B(t – 1)(t + 1) + C(t – 1)
Put t + 1 = 0, i.e., t = 1, we get
∴ 1 = A(0) + B(0) + C(– 2)

∴ C = `-(1)/(2)`
Put t – 1 = 0, i.e., t = 1, we get
∴ 1 = A(4) + B(0) + C(0)

∴ A = `(1)/(4)`
Comparing coefficients of t2 on both sides, we get
0 = A + B

∴ B = – A = `-(1)/(4)`

∴ `(1)/((t - 1)(t + 1)^2) = ((1/4))/(t - 1) + ((-1/4))/(t + 1) + ((-1/2))/(t + 1)^2`

∴ I = `(1)/(2) int [((1/4))/(t - 1) + ((-1/4))/(t + 1) + ((-1/2))/(t + 1)^2]*dt`

= `(1)/(8) int (1)/(t - 1)*dt - (1)/(8) int 1/(t + 1)*dt - (1)/(4) int (1)/(t - 1)^2*dt`

= `(1)/(8)log|t - 1| - (1)/(8)log|t + 1| - (1)/(4)((t + 1)^-1)/((-1)) + c`

= `(1)/(8)log|(t - 1)/(t + 1) + (1)/(4)*(1)/(t + 1) + c`

= `(1)/(8)log|(cosx - 1)/(cosx + 1)| + (1)/(4(cosx + 1)) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.4 [Page 145]

APPEARS IN

RELATED QUESTIONS

Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int ("d"x)/(x^3 - 1)`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int xcos^3x  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×