Advertisements
Advertisements
Question
Find :
`∫ sin(x-a)/sin(x+a)dx`
Solution
`∫ sin(x-a)/sin(x+a)dx`
`I = ∫ sin(x-a)/sin(x+a)dx`
= `∫sin(x-a+a-a)/sin(x+a)dx`
= `∫sin(x+a-2a)/sin(x+a)dx`
= `∫(sin(x+a) cos2a - sin 2acos(x+a))/sin(x+a)dx`
= `∫ cos 2a dx - ∫ sin 2acot(x+a)dx`
`I = x cos 2a - sin 2a log |sin(x+a)|+C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int 1/(4x^2 - 20x + 17) "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`