Advertisements
Advertisements
Question
Find :
`∫(log x)^2 dx`
Solution
`∫(log x)^2 dx`
let `u = (logx)^2 , "v" = 1`
`∫u."v" dx = u∫"v"dx - ∫[(du)/dx∫"v"dx]dx`
`therefore ∫ (log x)^2 . 1dx = (log x)^2 ∫1dx - ∫[2log x xx 1/x xx xdx]`
= `x(log|x|^2) - 2∫log x dx`
`x(log x)^2 - 2(x log|x| - x) + C`
= `x(log|x|)^2 - 2x log|x| + 2x + C` .
APPEARS IN
RELATED QUESTIONS
Integrate the function in x (log x)2.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
`int (sinx)/(1 + sin x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int e^x.sin2xdx`
Solve: `int sqrt(4x^2 + 5)dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate `int tan^-1x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`