Advertisements
Advertisements
Question
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Solution
Let I = `int cot^-1 (1 - x + x^2)*dx`
= `int tan^-1 (1/(1 - x + x^2))*dx`
= `int tan^-1 [(x + (1 - x))/(1 - x(1 - x))]`
= `int [tan^-1 x + tan^-1 (1 - x)]*dx`
= `int tan^-1 x*dx + int tan^-1 (1 - x)*dx`
∴ I = I1 + I2 ...(1)
I1 = `int tan^-1 x*dx = int(tan^-1x)1*dx`
= `(tan^-1x)* int 1dx - [d/dx (tan^-1x)* int 1dx]*dx`
= `(tan^-1x)x - int 1/(1 + x^2)*x*dx`
= `xtan^-1 x - (1)/(2) int (2x)/(1 + x^2)*dx`
∴ I1 = `x tan^-1x - (1)/(2)log|1 + x^2| + c_1`
...`[because d/dx (1 + x^2) = 2x and int (f'(x))/f(x) dx = log|f(x)| + c]`
I2 = `int tan^-1 (1 - x)*dx`
= `int tan^-1 (1 - x)]*1dx`
= `[tan^-1 (1 - x)]*int 1dx - int {d/dx [tan^-1 (1 - x)]* int 1dx}*dx`
= `[tan^-1 (1 - x)]*x - int (1)/(1 + (1 - x)^2)*(-1)*xdx`
= `xtan^-1 (1 - x) + int x/(1 + 1 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + int x/(2 - 2x + x^2)*dx`
Let x = `"A"[d/dx (2 - 2x + x^2)] + "B"`
∴ x = A(– 2 + 2x) + B = 2Ax + (–2A + B)
Comparing the coefficient of x and constant on both the sides, we get
1 = 2A and 0 = – 2A + B
∴ A = `(1)/(2) and 0 = -2(1/2) + "B"`
∴ B = 1
∴ x = `(1)/(2)(- 2 + 2x) + 1`
∴ I2= `xtan^-1 (1 - x) + int (1/2(-2 + 2x) + 1)/(2 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + 1/2 (-2 + 2x)/(2 - 2x + x^2)*dx + int (1)/(2 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|2 - 2x + x^2| + int (1)/(1 + (1 - 2x + x^2))*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + int (1)/(1 + (1 - x^2))*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + (1)/(1) (tan-1 (1 - x))/(-1) + c_2`
= `x tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| - tan^-1 (1 - x) + c_2`
= `(x - 1)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2`
∴ I2 = `-(1 - x)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2` ...(3)
From (1),(2) and (3), we get
I = `x tan^-1 x - (1)/(2) log|1 + x^2| + c_1 - (1 - x)tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| + c_2`
= `x tan^-1 x - (1)/(2) log|1 + x^2| - (1 - x)tan^-1 (1 - x) + 1/2 |x^2 - 2x + 2| + c`, where c = c1 + c2.
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/(4x + 5x^(-11)) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Solve: `int sqrt(4x^2 + 5)dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Solution of the equation `xdy/dx=y log y` is ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int (logx)^2 dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`