Advertisements
Advertisements
Question
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Solution
Let `I = sin^-1 ((2x)/ (1 + x^2)) dx`
Put x = tan t
⇒ dx = sec2 t dt
∴ `I = int sin^-1 ((2 tan t)/ (1 + tan^2 t)) sec^2 t dt`
`= int sin^-1 (sin 2t) sec^2 t dt`
`= 2t sec^2 t dt = 2 int sec^2 t dt`
`= 2 {t int sec^2 t dt - int [d/dt(t) * int sec^2 t dt] dt}`
`= 2 [t tant - int 1 * tan t dt]`
= 2 t tan t + 2 log |cos t| + C
`= 2 tan^-1 x*x + 2 log |1/ sqrt (1 + x^2)| + C` `...[∵ cos t = 1/ (sect) = 1/ (sqrt (1 + tan^2 t)) = 1/ (sqrt (1 + x^2))]`
`= 2 x tan^-1 x + 2 log |(1 + x^2)^(1/2)| + C`
`= 2 x tan^-1 x + 2 (- 1/2) log |1 + x^2| + C`
`= 2 x tan^-1 x - log |1 + x^2| + C`
APPEARS IN
RELATED QUESTIONS
Integrate the function in x log 2x.
Integrate the function in (sin-1x)2.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int logx/x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int1/(x^2 + 25)dx`