English

Integrate the function in sin-1(2x1+x2). - Mathematics

Advertisements
Advertisements

Question

Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.

Sum

Solution

Let `I = sin^-1 ((2x)/ (1 + x^2))  dx`

Put x = tan t

⇒ dx = sec2 t dt

∴ `I = int sin^-1 ((2 tan t)/ (1 + tan^2 t)) sec^2 t dt`

`= int sin^-1 (sin 2t) sec^2 t dt`

`= 2t sec^2 t dt = 2 int sec^2 t dt`

`= 2 {t int sec^2 t dt - int [d/dt(t) * int sec^2 t  dt] dt}`

`= 2 [t tant  - int 1 * tan t  dt]`

= 2 t tan t + 2 log |cos t| + C

`= 2 tan^-1 x*x + 2 log |1/ sqrt (1 + x^2)| + C`     `...[∵ cos t = 1/ (sect) = 1/ (sqrt (1 + tan^2 t)) = 1/ (sqrt (1 + x^2))]`

`= 2 x tan^-1 x + 2 log |(1 + x^2)^(1/2)| + C`

`= 2 x tan^-1 x + 2 (- 1/2) log |1 + x^2| + C`

`= 2 x tan^-1 x - log |1 + x^2| + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 328]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 22 | Page 328

RELATED QUESTIONS

Integrate the function in x log 2x.


Integrate the function in (sin-1x)2.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int logx/x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


Find: `int e^x.sin2xdx`


`int(logx)^2dx` equals ______.


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


Evaluate:

`int1/(x^2 + 25)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×