Advertisements
Advertisements
Question
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Solution
Let I = `int cos 3x cos 2x cos x *dx`
Consider cos 3x cos 2x cos x = `(1)/(2) cos 3x [2 cos 2x cos x]`
= `(1)/(2)cos3x [cos(2x + x) + cos(2x - x)]`
= `(1)/(2)[cos^2 3x + cos3x cosx]`
= `(1)/(4)[2cos^2 3x + 2cos 3x cosx]`
= `(1)/(4)[1 + cos6x + cos(3x + x) + cos(3x - x)]`
= `(1)/(4)[1 + cos6x + cos4x + cos2x]`
∴ I = `(1)/(4) int[1 + cos6x + cos4x + cos2x]*dx`
= `(1)/(4) int 1*dx + 1/4 int cos6x*dx + 1/4 int cos4x*dx + 1/4 int cos2x*dx`
= `x/(4) + (1)/(4)((sin6x)/6) + 1/4((sin4x)/4) + 1/4((sin2x)/2) + c`
= `(1)/(48)[12x + 2sin 6x + 3sin 4x + 6sin2x] + c`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x log x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: ∫ (log x)2 dx
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`intsqrt(1+x) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int (logx)^2 dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`