Advertisements
Advertisements
Question
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
Options
`1/15 log((x + 2)/(x - 1)) + "c"`
`1/15 log((x + 8)/(x + 7)) + "c"`
`1/15 log((x - 8)/(x + 7)) + "c"`
(x – 8)(x – 7) + c
Solution
`1/15 log((x - 8)/(x + 7)) + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : log (x2 + 1)
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`intsqrt(1+x) dx` = ______
Evaluate `int(1 + x + (x^2)/(2!))dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate:
`int1/(x^2 + 25)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).