Advertisements
Advertisements
Question
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Options
`"e"^"x" - 1/(3"e"^"3x")` + c
`"e"^"x" + 1/(3"e"^"3x")` + c
`"e"^"-x" + 1/(3"e"^"3x")` + c
`"e"^"-x" + 1/(3"e"^"3x") + "c"`
Solution
`"e"^"x" - 1/(3"e"^"3x")` + c
Explanation:
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx" = int ("e"^"x" + "e"^(-3"x"))` dx
`= "e"^"x" - 1/3 "e"^(-3"x") + "c"`
APPEARS IN
RELATED QUESTIONS
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int(x + 1/x)^3 dx` = ______.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(logcosx)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int(1 + x + x^2/(2!))dx`.