English

Evaluate the following : ∫e2x.cos3x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int e^(2x).cos 3x.dx`

Sum

Solution

Let I = `int e^(2x).cos 3x.dx`

I = `int cos 3x.e^(2x) dx`

= `cos 3x inte^(2x) .dx - int [d/dx (cos 3x) - e^(2x).dx]dx`

= `cos3x. (e^(2x))/(2) - int(-sin3x).(3) e^(2x)/2.dx`

= `(1)/(2).cos3xe^(2x) + 3/2 int sin 3x. e^(2x) dx`

= `(1)/(2)cos3xe^(2x) + 3/2[sin3x.int e^(2x)dx - int [(cos3x)3.int e^(2x)dx]dx`

= `(1)/(2)cos3x.e^(2x) + 3/2sin3x.(e^(2x))/2 - 3/2 .3int cos3x.e^(2x)/2dx`

= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 intcos3x.e^(2x)dx`

= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 "I"`

`"I" + 9/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`

`13/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`

I = `4/13 [1/2cos3x + 3/4sin3x]e^(2x)`

I = `1/13 [2cos3x + 3sin3x]e^(2x) + c`

∴ I = `e^(2x)/(13) (2 cos3x + 3 sin 3x) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 137]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in xlog x.


Integrate the function in x sin-1 x.


Integrate the function in x cos-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


`intx^2 e^(x^3) dx` equals: 


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int 1/sqrt(2x^2 - 5)  "d"x`


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×