Advertisements
Advertisements
Question
Evaluate the following : `int e^(2x).cos 3x.dx`
Solution
Let I = `int e^(2x).cos 3x.dx`
I = `int cos 3x.e^(2x) dx`
= `cos 3x inte^(2x) .dx - int [d/dx (cos 3x) - e^(2x).dx]dx`
= `cos3x. (e^(2x))/(2) - int(-sin3x).(3) e^(2x)/2.dx`
= `(1)/(2).cos3xe^(2x) + 3/2 int sin 3x. e^(2x) dx`
= `(1)/(2)cos3xe^(2x) + 3/2[sin3x.int e^(2x)dx - int [(cos3x)3.int e^(2x)dx]dx`
= `(1)/(2)cos3x.e^(2x) + 3/2sin3x.(e^(2x))/2 - 3/2 .3int cos3x.e^(2x)/2dx`
= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 intcos3x.e^(2x)dx`
= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 "I"`
`"I" + 9/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`
`13/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`
I = `4/13 [1/2cos3x + 3/4sin3x]e^(2x)`
I = `1/13 [2cos3x + 3sin3x]e^(2x) + c`
∴ I = `e^(2x)/(13) (2 cos3x + 3 sin 3x) + c`.
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin 3x.
Integrate the function in x log 2x.
Integrate the function in x2 log x.
Integrate the function in x sin-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `(xe^x)/(1+x)^2`.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int 1/sqrt(2x^2 - 5) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(4x^2 - 1) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^3 e^(x^2)dx`