English

Integrate the function in (x2 + 1) log x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in (x2 + 1) log x.

Sum

Solution

Let `I = int (x^2 + 1) log x  dx`

`= int log x. (x^2 + 1)  dx`

Integrating piecewise by taking (log x) as the first function, we get

`I = (log x) int (x^2 + 1) dx - int [d/dx  log x int (x^2 + 1) dx] dx`

`= log x. (x^3/3 + x) - int 1/x . (x^3/3 + 1) dx`

`= (x^3/3 + x) log x - int (x^3/3 + 1)  dx`

`= (x^3/3 + x) log x - (x^3/9 + x) + C`

`= (x^3/3 + x) log x - x^3/9 - x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 15 | Page 327

RELATED QUESTIONS

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in (sin-1x)2.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : log (x2 + 1)


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/x  "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`intsqrt(1+x)  dx` = ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×