Advertisements
Advertisements
Question
Integrate the function in (x2 + 1) log x.
Solution
Let `I = int (x^2 + 1) log x dx`
`= int log x. (x^2 + 1) dx`
Integrating piecewise by taking (log x) as the first function, we get
`I = (log x) int (x^2 + 1) dx - int [d/dx log x int (x^2 + 1) dx] dx`
`= log x. (x^3/3 + x) - int 1/x . (x^3/3 + 1) dx`
`= (x^3/3 + x) log x - int (x^3/3 + 1) dx`
`= (x^3/3 + x) log x - (x^3/9 + x) + C`
`= (x^3/3 + x) log x - x^3/9 - x + C`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in (sin-1x)2.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : log (x2 + 1)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/x "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`intsqrt(1+x) dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`