English

Evaluate the following : ∫x.cos3x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int x.cos^3x.dx`

Sum

Solution

cos 3x = 4 cos3x – 3cos x
∴ cos 3x + 3 cos x = 4 cos3x

∴ `int cos^3x = (1)/(4) cos3x + (3)/(4) cosx`

∴ `int cos^3x.dx = (1)/(4) int cos3x.dx + (3)/(4) int cos x.dx`

= `(1)/(4)((sin3x)/3) + (3)/(4) sinx`

= `(sin3x)/(12) + (3sinx)/(4)`                ...(1)

Let I = `int x cos^3x.dx`

= `x int cos^3x.dx - int[{d/dx (x) int cos^3x.dx}].dx`

= `x[(sin3x)/(12) + (3sinx)/(4)]- int 1.((sin3x)/(12) + (3sinx)/4).dx`      ...[By (1)]

= `(xsin3x)/(12) + (3x sinx)/(4) - (1)/(12) int sin 3x.dx - 3/4 int sin x.dx`

= `(x sin3x)/(12) + (3xsinx)/(4) - (1)/(12) ((-cos3x)/3) - (3)/(4) (- cos x) + c`

= `(1)/(4)[x/3 sin 3x + 1/9 cos3x + 3x sin x + 3 cos x] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 137]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x log x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x (log x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


`intx^2 e^(x^3) dx` equals: 


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


Evaluate `int 1/(x(x - 1))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


`int1/(x+sqrt(x))  dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`int (logx)^2 dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate:

`int x^2 cos x  dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×