Advertisements
Advertisements
Question
Evaluate the following : `int x.cos^3x.dx`
Solution
cos 3x = 4 cos3x – 3cos x
∴ cos 3x + 3 cos x = 4 cos3x
∴ `int cos^3x = (1)/(4) cos3x + (3)/(4) cosx`
∴ `int cos^3x.dx = (1)/(4) int cos3x.dx + (3)/(4) int cos x.dx`
= `(1)/(4)((sin3x)/3) + (3)/(4) sinx`
= `(sin3x)/(12) + (3sinx)/(4)` ...(1)
Let I = `int x cos^3x.dx`
= `x int cos^3x.dx - int[{d/dx (x) int cos^3x.dx}].dx`
= `x[(sin3x)/(12) + (3sinx)/(4)]- int 1.((sin3x)/(12) + (3sinx)/4).dx` ...[By (1)]
= `(xsin3x)/(12) + (3x sinx)/(4) - (1)/(12) int sin 3x.dx - 3/4 int sin x.dx`
= `(x sin3x)/(12) + (3xsinx)/(4) - (1)/(12) ((-cos3x)/3) - (3)/(4) (- cos x) + c`
= `(1)/(4)[x/3 sin 3x + 1/9 cos3x + 3x sin x + 3 cos x] + c`.
APPEARS IN
RELATED QUESTIONS
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x log x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in x (log x)2.
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
Evaluate `int 1/(x(x - 1)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
`int1/(x+sqrt(x)) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`