Advertisements
Advertisements
Question
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Solution
Let I = `int_0^1 x log(1 + 2x) "d"x`
= `[log (1 + 2x) x^2/2]_0^1 - int_0^1 2/(1 + 2x) x^2/2 "d"x` .....[Integrating by parts]
= `1/2 [x^2 log (1 + 2x)]_0^1 - int_0^1 x^2/(1 + 2x) "d"x`
= `1/2 [1 log 3 - 0] - int_0^1 (x/2 - x/(2(1 + 2x)))"d"x`
= ` 1/2 log 3 - 1/2 int_0^1 x "d"x + 1/2 int_0^1 x/(1 + 2x) "d"x`
= `1/2 log 3 - 1/2 [x^2/2]_0^1 + 1/4 int_0^1 ((2x + 1 - 1))/((2x + 1)) "d"x`
= `1/2 log 3 - 1/2 [1/2 - 0] + 1/4 int_0^1 "d"x - 1/4 int_0^1 1/(1 + 2x) "d"x`
= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log (2x + 1)]_0^1`
= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log 3 - log 1]`
= `1/2 log 3 - 1/8 log 3`
= `3/8 log 3`
APPEARS IN
RELATED QUESTIONS
Integrate the function in x2 log x.
Integrate the function in x sin-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int 1/(4x + 5x^(-11)) "d"x`
`int sin4x cos3x "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Solve: `int sqrt(4x^2 + 5)dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`intsqrt(1+x) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.