English

Integrate the following functions w.r.t.x: e5x.[5x.logx+1x] - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`

Sum

Solution

Let I = `int e^(5x) [(5x.log x + 1)/x].dx`

= `int e^(5x)[5log x + 1/x].dx`

Put 5x = t

∴ 5.dx = dt

∴ dx = `(1)/(5).dt`

Also, x = `t/(5)`

∴ I = `(1)/(5) int e^t [5 log (t/5) + 5/t].dt`

Let f(t) = `5log (t/5)`

= 5 log t – 5 log 5

∴ f'(t) = `d/dt [5log t - 5 log 5]`

= `(5)/t - 0`

= `(5)/t`

∴ I = `(1)/(5) int e^t [f(t) + f^'(t)].dt`

= `(1)/(5) e^t f(t) + c`

= `(1)/(5) e^t . 5log (t/5) + c`

=  e5x log x + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 138]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x sec2 x.


Integrate the function in tan-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


Evaluate the following:

`int_0^pi x log sin x "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Solve: `int sqrt(4x^2 + 5)dx`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`inte^(xloga).e^x dx` is ______


`int(xe^x)/((1+x)^2)  dx` = ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate `int tan^-1x  dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3e^(x^2) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×