Advertisements
Advertisements
Question
Evaluate: ∫ (log x)2 dx
Solution
Let I = ∫ (log x)2 dx
I = ∫ (log x)2 . 1 dx
I = `(log x)^2 int 1. "dx" − int ["d"/"dx" (log x)^2 int 1. "dx"] "dx"`
I = `x(log x)^2 − int 2 log x. 1/cancelx. cancelx "dx"`
I = `x(log x)^2 − 2 int log x. 1 "dx"`
I = `x(log x)^2 − 2[log x int 1. "dx" − int {"d"/"dx" (log x) int 1. "dx"}]`dx
I = `x(log x)^2 − 2[(log x)x − int 1/cancelx. cancelx. "dx"]`
I = `x(log x)^2 − 2[xlog x − int 1. "dx"]`
I = `x(log x)^2 − 2(x log x − x) + c`
∴ I = x(log x)2 − 2x log x + 2x + c
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in `x^2e^x`.
Integrate the function in x tan-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2tan^-1x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.