English

Evaluate: ∫ (log x)2 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: ∫ (log x)2 dx

Sum

Solution

Let I = ∫ (log x)2 dx

I = ∫ (log x)2 . 1 dx

I = `(log x)^2 int 1. "dx" − int ["d"/"dx" (log x)^2 int 1. "dx"] "dx"`

I = `x(log x)^2  − int 2 log x. 1/cancelx. cancelx "dx"`

I = `x(log x)^2  − 2 int log x. 1 "dx"`

I = `x(log x)^2 − 2[log x int 1. "dx" − int {"d"/"dx" (log x) int 1. "dx"}]`dx

I = `x(log x)^2 − 2[(log x)x − int 1/cancelx. cancelx. "dx"]`

I = `x(log x)^2 − 2[xlog x − int 1. "dx"]`

I = `x(log x)^2 − 2(x log x − x) + c` 

∴ I = x(log x)2 − 2x log x + 2x + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Integration - MISCELLANEOUS EXERCISE - 5 [Page 139]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 5 Integration
MISCELLANEOUS EXERCISE - 5 | Q IV. 4) i) | Page 139
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×