Advertisements
Advertisements
Question
Integrate the function in tan-1 x.
Solution
Let `I = int tan^-1 x dx`
`= int tan^-1 x. 1 dx`
Put `u = tan^-1 x, v = 1`
`int uv dx = u int v dx - int ((du)/dx int v dx) dx`
`I= int tan^-1 x. 1`
`(tan^-1 x) int 1 dx - (d/dx (tan^-1 x) int dx) dx`
`= x tan^-1 x - int 1/(1 + x^2) . x dx`
`= x tan^-1 x - 1/2 int (2x)/(1 + x^2) dx`
Put 1 + x2 = t, and dx = dt
`= x tan^-1 x - 1/2 int dt/t`
`= x tan^-1 x - 1/2 log t + C`
`= x tan^1 - 1/2 log (1 + x^2) + C`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in e2x sin x.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`