English

∫tanx+cotx dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int sqrt(tanx) + sqrt(cotx)  "d"x`

Sum

Solution

Let I = `int (sqrt(tanx) + sqrt(cotx))  "d"x`

= `int (sqrt(tanx) + 1/sqrt(tanx))  "d"x`

= `int (tanx + 1)/sqrt(tanx)  "d"x`

Put `sqrt(tanx)` = t

∴ tanx = t2

∴x = tan−1(t2)

∴ dx = `1/(1 + ("t"^2)^2) * 2"t" "dt"`

∴ dx = `(2"t")/(1 + "t"^4)  "dt"`

∴ I = `int ("t"^2 + 1)/"t"* (2"t")/(1 + "t"^4)  "dt"`

= `2 int ("t"^2 + 1)/("t"^4 + 1)  "dt"`

= `2 int (1 + 1/"t"^2)/("t"^2 + 1/"t"^2)  "dt"`

= `2 int (1 + 1/"t"^2)/(("t" - 1/"t")^2 + 2)`

Put `"t" - 1/"t"` = u

∴ `(1 + 1/"t"^2) "dt"` = du

∴ I = `2 int "du"/("u"^2 + 2)`

= `2 int  "du"/("u"^2 + (sqrt(2))^2`

= `2* 1/sqrt(2)tan^-1 ("u"/sqrt(2)) + "c"`

= `sqrt(2)tan^-1 (("t" - 1/"t")/sqrt(2)) + "c"`

= `sqrt(2)tan^-1 (("t"^2 - 1)/sqrt(2)) + "c"`

= `sqrt(2)tan^-1 ((tanx - 1)/sqrt(2tanx)) + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Long Answers III

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin 3x.


Integrate the function in xlog x.


Integrate the function in tan-1 x.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int sin4x cos3x  "d"x`


Evaluate `int 1/(x(x - 1))  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×