English

Evaluate: ∫dx5-16x2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int "dx"/(5 - 16"x"^2)`

Sum

Solution

Let I = `int "dx"/(5 - 16"x"^2)`

`= int 1/(16(5/16 - "x"^2))` dx

`= 1/16 int 1/((sqrt5/4)^2 - "x"^2)` dx

`= 1/16 * 1/(2 sqrt5/4) log |(sqrt5/4 + "x")/(sqrt5/4 - "x")|` + c

∴ I = `1/(8sqrt5) log |(sqrt5 + 4"x")/(sqrt5 - 4"x")|` + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Integration - MISCELLANEOUS EXERCISE - 5 [Page 139]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 5 Integration
MISCELLANEOUS EXERCISE - 5 | Q IV. 3) vi) | Page 139

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Evaluate the following.

∫ x log x dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/("9x"^2 - 25)`


`int "e"^x x/(x + 1)^2  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Solution of the equation `xdy/dx=y log y` is ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×