Advertisements
Advertisements
Question
Evaluate: `int "dx"/(5 - 16"x"^2)`
Solution
Let I = `int "dx"/(5 - 16"x"^2)`
`= int 1/(16(5/16 - "x"^2))` dx
`= 1/16 int 1/((sqrt5/4)^2 - "x"^2)` dx
`= 1/16 * 1/(2 sqrt5/4) log |(sqrt5/4 + "x")/(sqrt5/4 - "x")|` + c
∴ I = `1/(8sqrt5) log |(sqrt5 + 4"x")/(sqrt5 - 4"x")|` + c
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate the following.
∫ x log x dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("9x"^2 - 25)`
`int "e"^x x/(x + 1)^2 "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`