Advertisements
Advertisements
Question
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Solution
Let I = `int "dx"/(25"x" - "x"(log "x")^2)`
`= int 1/("x"[25 - (log "x")^2])` dx
Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int "dt"/(25 - "t"^2)`
`= int 1/((5)^2 - "t"^2)` dt
`= 1/(2(5)) * log |(5 + "t")/(5 - "t")|` + c
∴ I = `1/10 log |(5 + log "x")/(5 - log "x")|` + c
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in x cos-1 x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate: ∫ (log x)2 dx
Evaluate `int 1/(x log x) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
The value of `inta^x.e^x dx` equals
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`