Advertisements
Advertisements
Question
The value of `inta^x.e^x dx` equals
Options
`(a^x.log_ea)e^x + c`
`(a^x.e^x)/(log_e(ae)) + c`
`(a^x.e^x)/(log_(ae)e) + c`
`log_e(ae)(ae)^x + c`
Solution
`bb((a^x.e^x)/(log_e(ae)) + c)`
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in ex (sinx + cosx).
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : e2x sin x cos x
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int1/sqrt(x^2 - a^2) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int (logx)^2 dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`