Advertisements
Advertisements
Question
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Solution
Let I = `int e^-x cos 2x.dx`
∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.
I = `cos 2x int e^-x dx – int int e^(-x). d/dx cos 2x. dx`
I = `cos 2x. (e^-x)/(d/dx (-x)) – int(e^-x)/(d/dx (- x)). (- sin 2x. d/dx 2x) dx`
I = `- cos 2x. e^-x – int (- e^(-x)) . (- 2sin 2x) dx`
I = `- cos 2x. e^-x – 2 int e^(-x). sin 2x dx`
I = `- cos 2x. e^-x - 2 [sin 2x. int e^-x dx - int int e^(-x) dx. d/dx sin 2x. dx]`
I = `- cos 2x. e^-x - 2 sin 2x. (e^-x)/(- 1) + 2 int (e^-x)/(- 1). cos 2x. 2. dx`
I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 2 int 2. e^(-x). cos 2x.dx`
I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4 int e^(-x). cos 2x.dx`
I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4I`
I + 4I = `- cos 2x. e^-x + 2 sin 2x. (e^-x)`
5I = `e^-x (2. sin 2x - cos 2x)`
I = `e^-x/5 (2. sin 2x - cos 2x) + C`
Notes
Let I = `int e^-x cos 2x.dx`
∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.
I = `cos 2x int e^-x dx – int int e^(-x). d/dx cos 2x. dx`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin 3x.
Integrate the function in `x^2e^x`.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`