English

Integrate the following functions w.r.t. x : e-xcos2x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t.x:

`e^-x cos2x`

Sum

Solution

Let I = `int e^-x cos 2x.dx`

∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.

I = `cos 2x int e^-x  dx  – int int e^(-x). d/dx cos 2x. dx`

I = `cos 2x. (e^-x)/(d/dx (-x)) – int(e^-x)/(d/dx (- x)). (- sin 2x. d/dx 2x) dx`

I = `- cos 2x. e^-x  – int (- e^(-x)) . (- 2sin 2x) dx`

I = `- cos 2x. e^-x  –  2 int e^(-x). sin 2x  dx`

I = `- cos 2x. e^-x - 2 [sin 2x. int e^-x dx - int int e^(-x) dx. d/dx sin 2x. dx]`

I = `- cos 2x. e^-x - 2 sin 2x. (e^-x)/(- 1) + 2 int  (e^-x)/(- 1). cos 2x. 2. dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 2 int  2. e^(-x). cos 2x.dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4 int  e^(-x). cos 2x.dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4I`

I + 4I = `- cos 2x. e^-x + 2 sin 2x. (e^-x)`

5I = `e^-x (2. sin 2x - cos 2x)`

I = `e^-x/5  (2. sin 2x - cos 2x) + C`

shaalaa.com

Notes

Let I = `int e^-x cos 2x.dx`

∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.

I = `cos 2x int e^-x  dx  – int int e^(-x). d/dx cos 2x. dx`

  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 138]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin 3x.


Integrate the function in `x^2e^x`.


Integrate the function in x cos-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in e2x sin x.


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int sin4x cos3x  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int ("d"x)/(x - x^2)` = ______


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int1/(x+sqrt(x))  dx` = ______


`inte^(xloga).e^x dx` is ______


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×