English

Evaluate ∫π0 e^2 x.sin(π/4+x) dx - Mathematics

Advertisements
Advertisements

Question

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`

Solution

Let `I==int_0^pie^(2x)sin(pi/2+x)dx`

Integrating by parts, we get

` I=1/2[e^(2x)sin(pi/4+x)_0^pi]-1/2int_0^pie^(2x)cos(pi/4+x)dx`

 Now, integrating the second term by parts, we get

` =>I=1/2[e^(2x)sin(pi/4+x)_0^pi]-1/2{[1/2e^(2x)cos(pi/4+x)_0^pi]+1/2int_0^pi e^(2x)sin(pi/4+x)dx}`

=>`I=1/2[e^(2x)sin(pi/4+x)_0^pi]-1/4[e^(2x)cos(pi/4+x)_0^pi]-1/4I`

`=>5/4I=1/2[e^(2x)sin(pi+pi/4)-sin(pi/4)]-1/4[e^(2x)cos(pi+pi/4)-cos(pi/4)]`

`=>5/4I=1/2 |__-e^(2x)xx1/sqrt2-1/sqrt2__|-1/4|__-e^(2pi)xx1/sqrt2-1/sqrt2__|`

`=>5/4I==1/(2sqrt2)e^(2pi)-1/(2sqrt2)+1/(4sqrt2)e^(2pi)+1/(4sqrt2)`

`=>I=-1/(5sqrt2)(e^(2pi)+1)`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Delhi Set 1

RELATED QUESTIONS

Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Evaluate the following:

`int sec^3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


`int (sinx)/(1 + sin x)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


Evaluate `int 1/(x log x)  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int1/(x+sqrt(x))  dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×