Advertisements
Advertisements
Question
Evaluate the following: `int x.sin^-1 x.dx`
Solution
Let I = `int x.sin^-1 x.dx`
= `int (sin^-1x).xdx`
= `(sin^-1x) int x.dx - int[{d/dx(sin^-1x) int x.dx}].dx`
= `(sin^-1x) (x^2/2) - int (1/sqrt(1 - x^2))(x^2/2).dx`
= `(x^2 sin^-1x)/(2) + (1)/(2) int (-x^2)/sqrt(1 - x^2).dx`
= `(x^2 sin^-1x)/(2) + (1)/(2) int ((1 - x^2) - 1)/sqrt(1 - x^2).dx`
= `(x^2 sin^-1x)/(2) + (1)/(2) int [sqrt(1 - x^2) - (1)/sqrt(1 - x^2)].dx`
= `(x^2 sin^-1x)/(2) + (1)/(2) int sqrt(1 - x^2).dx - (1)/(2) int (1)/sqrt(1 - x^2).dx`
= `(x^2 sin^-1x)/(2) + (1)/(2) [x/2 sqrt(1 - x^2) + 1/2 sin^-1x] - 1/2 sin^-1 x + c`
= `(x^2 sin^-1x)/(2) + (1)/(4) xsqrt(1 - x^2) - (1)/(4) sin^-1 x + c`.
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x log x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: ∫ (log x)2 dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int (logx)^2 dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).