English

Integrate the following functions w.r.t. x : ex.(1x-1x2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`

Sum

Solution

Let I = `int e^x .(1/x - 1/x^2).dx`

Let f(x) = `(1)/x`

∴ f'(x) = `-(1)/x^2`

∴ I = `int e^x[f(x) + f'(x)].dx`

= ex f(x) + c

= `e^x . (1)/x + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 138]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x sin x.


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: ∫ (log x)2 dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int sin4x cos3x  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(x log x)  "d"x`


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


`intsqrt(1+x)  dx` = ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`int1/(x+sqrt(x))  dx` = ______


`inte^(xloga).e^x dx` is ______


`int logx  dx = x(1+logx)+c`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×