Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Solution
Let I = `int e^x .(1/x - 1/x^2).dx`
Let f(x) = `(1)/x`
∴ f'(x) = `-(1)/x^2`
∴ I = `int e^x[f(x) + f'(x)].dx`
= ex f(x) + c
= `e^x . (1)/x + c`.
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx