Advertisements
Advertisements
Question
Integrate the following w.r.t.x : e2x sin x cos x
Solution
Let I = `int e^(2x)*sin x cos x*dx`
= `(1)/(2) int e(2x)*2sin x cos x dx`
= `(1)/(2) int e^(2x)*sin2x *dx` ...(1)
= `(1)/(2)[e^(2x) int sin 2x*dx - int {d/dx (e^(2x)) int sin 2x*dx}*dx]`
= `(1)/(2)[e(2x) ((-cos2x)/2) - int e^(2x) xx 2 xx ((- cos2x)/2)*dx]`
= `-(1)/(4) e^(2x) cos 2x + 1/2 int e^(2x) cos 2x*dx`
= `-(1)/(4)e^(2x) cos2x + (1)/(2)[e^(2x) int cos 2x*dx - int {d/dx (e^(2x)) int cos 2x*dx }*dx]`
= `(1)/(4)e^(2x) cos 2x + 1/2 [e^(2x).(sin2x)/(2) - int e^(2x) xx 2 xx (sin2x)/(2)*dx]`
= `-(1)/(4) e^(2x) cos 2x + (1)/(4) e^(2x) sin 2x - (1)/(2) int e^(2x) sin2x*dx`
∴ I = `-(1)/(4) e^(2x) cos 2x + (1)/(4) e^(2x) sin 2x - "I"` ..[By (1)]
∴ 2I = `-(1)/(4)e^(2x) cos 2x + 1/4e^(2x) sin2x`
∴ I = `e^(2x)/(8)(sin2x - cos2x) + c`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int (sinx)/(1 + sin x) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`intx^2e^(4x)dx`