Advertisements
Advertisements
Question
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Solution
Let I = `int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Put f(x) = (log x)2
∴ f '(x) = `(2 log "x")/"x"`
∴ I = ∫ ex [f(x) + f '(x)] + dx
= ex f(x) + c
∴ I = ex (log x)2 + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`intsqrt(1+x) dx` = ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate `int tan^-1x dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`