English

Prove that: ∫x2+a2dx=x2x2+a2+a22log|x+x2+a2|+c - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`

Sum

Solution

Let I = `int sqrt(x^2 + a^2)dx`

= `int sqrt(x^2 + a^2)*1dx`

= `sqrt(x^2 + a^2) int 1dx - int[d/dx(sqrt(x^2 + a^2))*int1dx]dx`

= `sqrt(x^2 + a^2)*x - int (2x)/(2sqrt(x^2 + a^2))*x  dx`

= `x*sqrt(x^2 + a^2) - int ((x^2 + a^2) - a^2)/sqrt(x^2 + a^2)dx`

= `x*sqrt(x^2 + a^2) - int ((x^2 + a^2)/sqrt(x^2 + a^2) - a^2/sqrt(x^2 + a^2))dx`

= `x*sqrt(x^2 + a^2) - int sqrt(x^2 + a^2)dx + a^2 int 1/sqrt(x^2 + a^2)dx`

∴ I = `x*sqrt(x^2 + a^2) - I + a^2log|x + sqrt(x^2 + a^2)| + c_1`

∴ 2I = `x*sqrt(x^2 + a^2) + a^2 log|x + sqrt(x^2 + a^2)| + c_1`

∴ I = `x/2 sqrt(x^2 + a^2) + a^2/2 log|x + sqrt(x^2 + a^2)| + c_1/2`

∴ `int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log|x + sqrt(x^2 + a^2)| + c, "where"  c = c_1/2`

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (October)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in xlog x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sin4x cos3x  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


∫ log x · (log x + 2) dx = ?


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate:

`int x^2 cos x  dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×