Advertisements
Advertisements
प्रश्न
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
उत्तर
Let I = `int sqrt(x^2 + a^2)dx`
= `int sqrt(x^2 + a^2)*1dx`
= `sqrt(x^2 + a^2) int 1dx - int[d/dx(sqrt(x^2 + a^2))*int1dx]dx`
= `sqrt(x^2 + a^2)*x - int (2x)/(2sqrt(x^2 + a^2))*x dx`
= `x*sqrt(x^2 + a^2) - int ((x^2 + a^2) - a^2)/sqrt(x^2 + a^2)dx`
= `x*sqrt(x^2 + a^2) - int ((x^2 + a^2)/sqrt(x^2 + a^2) - a^2/sqrt(x^2 + a^2))dx`
= `x*sqrt(x^2 + a^2) - int sqrt(x^2 + a^2)dx + a^2 int 1/sqrt(x^2 + a^2)dx`
∴ I = `x*sqrt(x^2 + a^2) - I + a^2log|x + sqrt(x^2 + a^2)| + c_1`
∴ 2I = `x*sqrt(x^2 + a^2) + a^2 log|x + sqrt(x^2 + a^2)| + c_1`
∴ I = `x/2 sqrt(x^2 + a^2) + a^2/2 log|x + sqrt(x^2 + a^2)| + c_1/2`
∴ `int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log|x + sqrt(x^2 + a^2)| + c, "where" c = c_1/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x2 log x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int(logx)^2dx` equals ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Solution of the equation `xdy/dx=y log y` is ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`