Advertisements
Advertisements
प्रश्न
Evaluate the following : `int x^2tan^-1x.dx`
उत्तर
Let I = `int x^2 tan^-1 x.dx`
= `int(tan^-1x).x^2dx`
= `(tan^-1x) int x^2.dx - int[{d/dx(tan^-1x) int x^2.dx}].dx`
= `(tan^-1 x)(x^3/3) - int (1/(1 + x^2))(x^3/3).dx`
= `x3/(3) tan^-1x - (1)/(3) (x(x^2 + 1) - x)/(x^2 + 1).dx`
= `x^3/(3) tan^-1x - (1)/(3)[int{x - x/(x^2 + 1)}.dx]`
= `x^3/(3) tan^-1x - (1)/(3)[int x.dx - (1)/(2) int(2x)/(x^2 + 1).dx]`
= `x^3/(3)tan^-1x - (1)/(3) [x^2/(2) - (1)/(2)log|x^2 + 1|] + c`
...`[because d/dx(x^2 + 1) = 2x and int (f'(x))/f(x) dx = log|f(x)| + c]`
= `x^3/(3)tan^-1x - x^2/(6) + (1)/(6) log|x^2 + 1| + c`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
`int logx dx = x(1+logx)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`