मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following with respect to the respective variable : θθθθsin6θ+cos6θsin2θ⋅cos2θ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`

बेरीज

उत्तर

`int (sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`

= `int[((sin^2θ + cos^2θ)^3 - 3sin^2θ*cos^2θ(sin^2θ + cos^2θ))/(sin^2θ*cos^2θ)]*dθ`     ...[∵ a3 + b3 = (a + b)3 – 3ab(a + b)]

= `int[((1)^3 - 3sin^2θ*cos^2θ(1))/(sin^2θ*cos^2θ)]*dθ`

= `int[(1)/(sin^2θ*cos^2θ) - 3]*dθ`

= `int [(sin^2θ + cos^2θ)/(sin^2θ*cos^2θ) - 3]*dθ`

= `int (1/cos^2θ + 1/sin^2θ - 3)*dθ`

= `int (sec^2θ + "cosec"^2θ - 3)*dθ`

= `int sec^2θ*dθ + int "cosec"^2θ*dθ - 3int1*dθ`

= tan θ – cot θ - 3θ + c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 2.6 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate : sec3 x w. r. t. x.


Integrate the function in x sin x.


Integrate the function in `x^2e^x`.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in tan-1 x.


Integrate the function in x (log x)2.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in e2x sin x.


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : e2x sin x cos x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int (sinx)/(1 + sin x)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int(x + 1/x)^3 dx` = ______.


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(4x^2 - 1)  "d"x`


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int(logx)^2dx` equals ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate `int tan^-1x  dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following:

`intx^3e^(x^2)dx` 


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


The value of `inta^x.e^x dx` equals


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×