Advertisements
Advertisements
प्रश्न
`int (sinx)/(1 + sin x) "d"x`
उत्तर
Let I = `int (sinx)/(1 + sin x) "d"x`
= `int (sinx)/(1 + sinx)* (1 - sinx)/(1 - sinx) "d"x`
= `int (sinx - sin^2x)/(1 - sin^2x) "d"x`
= `int (sinx - sin^2x)/(cos^2x) "d"x`
= `int((sinx)/(cos^2x) - (sin^2x)/(cos^2x)) "d"x`
= `int(1/(cosx) * (sinx)/(cosx) - tan^2x) "d"x`
= `int[secx tanx - (sec^2x - 1)] "d"x`
= `int secx tanx "d"x - int sec^2x "d"x + int1* "d"x`
∴ I = sec x − tan x + x + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in e2x sin x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`inte^(xloga).e^x dx` is ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`intx^2e^(4x)dx`
The value of `inta^x.e^x dx` equals
Evaluate `int(1 + x + x^2/(2!))dx`.