Advertisements
Advertisements
प्रश्न
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
उत्तर
Let, I = `int e^x ((1 - sinx)/(1 - cosx))dx`
= `int e^x (1/(1 - cosx) - sinx/(1 - cosx))dx`
= `int e^x ((-sinx)/(1 - cosx) + 1/(1 - cosx))dx`
Let, f(x) = `(-sinx)/(1 - cosx)`
f'(x) = `-[(cosx(1 - cosx) - sinx (sinx))/(1 - cosx)^2]`
= `-[(cosx - cos^2x - sin^2x)/(1 - cosx)^2]`
= `-[(cosx - (cos^2x + sin^2x))/(1 - cosx)^2]`
= `-[(cosx - 1)/(1 - cosx)^2]`
= `(1 - cosx)/(1 - cosx)^2`
= `1/(1 - cosx)`
Hence, the given integration is of form
`int e^x [f(x) + f^'(x)]dx = e^x f(x)`
where f(x) = `(-sinx)/(1 - cosx)` and f'(x) = `1/(1 - cosx)`
∴ I = `e^x xx ((-sinx)/(1 - cosx))`
= `(e^x sinx)/((cosx - 1))`.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x tan-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`intsqrt(1+x) dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following:
`intx^3e^(x^2)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`