Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
उत्तर
Let I = `int "x"^2 "e"^"3x"`dx
`= "x"^2 int "e"^"3x" "dx" - int["d"/"dx" ("x"^2) int "e"^"3x" "dx"]` dx
`= "x"^2 * ("e"^"3x"/3) - int 2"x" * "e"^"3x"/3` dx
`= ("x"^2)/3 "e"^"3x" - 2/3 int "x" * "e"^"3x"` dx
`= ("x"^2)/3 "e"^"3x" - 2/3 ["x" int "e"^"3x" "dx" - int ("d"/"dx" ("x") int "e"^"3x" "dx") "dx"]`
`= ("x"^2 * "e"^"3x")/3 - 2/3 ["x" * "e"^"3x"/3 - int 1 * "e"^"3x"/3 "dx"]`
`= ("x"^2 * "e"^"3x")/3 - 2/3 [1/3 "xe"^"3x" - 1/3 int "e"^"3x" "dx"]`
`= ("x"^2 * "e"^"3x")/3 - 2/3 [1/3 "xe"^"3x" - 1/3 * "e"^"3x"/3]` + c
∴ I = `1/3 "x"^2 * "e"^"3x" - 2/9 "xe"^"3x" + 2/27 "e"^"3x" + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate `int 1/(x(x - 1)) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int(logx)^2dx` equals ______.
`intsqrt(1+x) dx` = ______
Evaluate the following:
`intx^3e^(x^2)dx`
The value of `inta^x.e^x dx` equals